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In this article, it is shown that by using the known (or estimated) value of car-

rier tracking loop SNR in the decision metric, it is possible to improve the error

probability performance of a partially coherent multiple phase-shift-keying (MPSK)
system relative to that corresponding to the commonly used ideal coherent decision

rule. Using a maximum-likelihood approach, an optimum decision metric is derived

and shown to take the form of a weighted sum of the ideal coherent decision metric

(i.e., correlation) and the noncoherent decision metric which is optimum for differ-
ential detection of MPSK. The performance of a rece/ver based on this optimum

decision rule is derived and shown to provide continued improvement with increas-

ing length of observation interval (data symbol sequence length). Unfortunately,

increasing the observation length does not eliminate the error floor associated with

the finite loop SNR. Nevertheless, in the limit of infinite observation length, the av-

erage error probability performance approaches the algebraic sum of the error floor

and the performance of ideal coherent detection, i.e., at any error probability above
the error floor, there is no degradation due to the partial coherence. It is shown

that this limiting behavior is virtually achievable with practical size observation
lengths. Furthermore, the performance is quite insensitive to mismatch between

the estimate of loop SNR (e.g., obtained from measurement) fed to the decision

metric and its true value. These results may be of use in low-cost Earth-orbiting or
deep-space missions employing coded modulations.

I. Introduction

It is well known that for ideal phase coherent detection

of multiple phase-shift-keying (MPSK), the decision rule
that minimizes average bit error probability is based on

a correlation metric and leads to bit-by-bit decisions. In

practical situations, the phase introduced by the transmis-
sion over the channel is unknown and thus the assumption

of perfect knowledge of this parameter at the receiver is

idealistic. Typically, if the channel phase is reasonably
well behaved, the receiver will attempt to estimate it via

some type of phase synchronization subsystem, such as a
carrier phase tracking loop. Since the estimate is made in

the presence of the ever-present additive channel thermal

noise, the receiver's phase estimate used for demodulation

purposes is not perfect. Detection under these circum-

stances is known as partially coherent detection.

OrdinariLy in this environment, one continues to use the

ideal coherent detection correlation metric despite the fact

that it is no longer optimum for partially coherent detec-
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tion. In particular, the presence of a phase error between
the true channel and the receiver's estimate of it intro-

duces memory into the observation, and thus any metric

leading to bit-by-bit detection cannot be optimum. In-
stead, one must resort to sequence estimation where the

length of the sequence is proportional to the duration over
which the phase error can be assumed constant.

where r = (r0,rl,...,rN-1),s = (so, sl,...,slv-1), and

n -- (no, nl, .... rig-l) are the received sequence, transmit-

ted sequence, and noise sequence, respectively. Also, nk is

a sample of zero mean complex Gaussian noise with vari-

ance (per dimension) a2 = No/T where No is the single-
sided power spectral density of the noise process n(t) at

the receiver input.

In this article, a maximum-likelihood approach to par-
tially coherent detection is taken, an approach not unlike

that previously applied to noncoherent and coherent de-

tection. It will be shown that considerable performance

improvement can be gained by using the optimum metric

which leads to a maximum-likelihood sequence estimation

(MLSE) type of algorithm.

II. Maximum-Likelihood Partially Coherent

For partiallycoherent detection,the receiverprovides

a carrierphase synchronizationsubsystem, e.g.,a tracking

loop, which derivesa complex referencesignalej° whose

phase 0 isan estimate of the unknown channel phase O.

After demodulating r with thisreference(complex conju-

gate multiplicationofthe two signals),one gets

R = re -j° = se j¢° + ne -j° (3)

Detection of MPSK Over an AWGN
where ¢_--A 0 - 0 is the carrier phase error and typically

Channel has a Tikhonov probability density function (pdf) [1], i.e.,

Consider the transmission of MPSK signals over an ad-

ditive white Ganssian noise (AWGN) channel. The base-

band representation of the transmitted signal in the inter- P(¢c) = exp(p cos ¢c). I¢c[ < lr (4)
val (kT, (k + 1)T) has the complex form 27rI0(p) '

sk -- v_-Pc/¢h (1)

where P denotes the constant signal power, T denotes

the MPSK symbol interval, and Ck the transmitted phase

which takes on one of M uniformly distributed values

_rn = 2rm/M;m = O, 1,... ,M - 1 around the unit circle.
Assume that in addition to AWGN, the channel introduces

a phase 0 which can be constant (independent of time) over
a duration of N data symbols and uniformly distributed

in the interval (-It, 7r). Thus, the received sequence r is

expressed as

r = sd ° + n (2)

Here p is a parameter related 1 to the tracking loop SNR

and I0(.) is the zeroth-order modified Bessel function of
the first kind.

For the assumed AWGN model for n, the a posteriori

probability of the demodulated received sequence R given

the transmitted sequence s and the carrier phase error ¢¢

follows from Eq. (3) and is

1 For first-order tracking loops, p is indeed the loop SNR. For second-

order loops, p is approximately the loop SNR for sufficiently large

values [1]. In what follows, p is referred to simply as the loop SNR

which isassumed to be known or estimated.

p(Rls,¢_)- -- 1 { IIR-exp j

, exp L,=0 + Isk_il_'] - 2 Rk , k-=
i=0
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where

N-1
',S* •

Im {_=_oRk-' k-, t
" ot -- "_a13-1

--' " : ..... Re Rk_i8*__ i
- t. i=0

Averaging Eq. (5) over the pdf in Eq. (4) gives, upon simplification,

J;

= ,o(,)(2_:.)N oxp1-_ _ [IR'-'l_+Is,_,l'

xIo (Iil ' l )ll '1 Rk , k-, cos_.s" . oe+ pu_ +
_2n2 \l i=0 \l i=0

_k-iS;_i sin

Since

(6)

(T)

Rk-i k-i
I i=0

Eq. (7) further simplifies to

It' }}' 1 It' }cos a = Re R}_is*k_ i ; Rk_isk_ i sina = Im Rk_is*k_ i

k i=0 i=0 k i=0

(8)

p(Rls ) =
1 1 f 1 N-I ]}Io(p) (2_._) N exp /-2-_t _ [IR1'-'12+ Is_'-'12

t, n i=0

('4( } )( })x Io _ Re Rk-iS*k_ i + pa_n + Im t ¢=0 Rk-ls*k-i _) (9)

Note from Eq. (1) that for MPSK, {ski 2 is constant for all transmitted phases _rn. Thus, since I0(z) is a monotonic

function of its argument, maximizing p(Rls) over s is equivalent to finding

{I N' } )'I })'}max Re Rk-i k-i + Por2 + Im Rk-, k-,
S

k i=0 '=

' }}max Rk-is*t_i + pa = max E R}-is*k-i + 2po'_ Re Rk_is*t_ i

8 _,1 i=0 8 i=0 k i=0

(10)
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This, using Eq. (i),resultsin the decisionrule

l, I i=o

2I
Rt =e '!

I

where _, _-I,...,_k-N+l isa particularsequence ofthe

transmitted phases /_,_.In Eq. (11), the firstterm in-

sidethe braces representsthe component of the decision

metric associated with noncoherent (differential) detec-

tion [2], i.e., total lack of knowledge of the uniformly dis-

tributed channel phase 0. The second term inside the

braces represents the component of the decision metric

for ideal coherent detection, i.e., complete knowledge of
the channel phase 0. Thus, the partially coherent decision
metric is a linear combination of the coherent and non-

coherent decision metrics with the weighting of the two

terms in proportion to the product of the tracking loop

SNR and the channel noise variance. Note that for any
nonzero value of p, this decision rule is unique because the

second term inside the braces in Eq. (11) is unique but not

the first term. For p = 0, which corresponds to differen-

tially coherent detection, there is a phase ambiguity since

the addition of an arbitrary fixed phase, say ¢=, to all N
estimated phases _bk,_-l, ..., _bk-_v+l results in the same

decision for _. In [2], the authors observed that by letting

if, = _k-N+l and differentially encoding the input phases
at the transmitter,

_,= _bk-a+ A_k (12)

where now A_k denotes the input data phase correspond-

ing to the kth transmissionintervaland _k tiledifferen-

tiallyencoded versionof it,the decisionrulecan turn into

one in which the phase ambiguity isresolved.From now

on, assume p :_0 and thus that thereisno formalrequire-

ment fordifferentiallyencoding the data phase symbols.

Figure 1 is an illustrationin complex form of a re-

ceiverimplemented on the basis of Eq. (II). Note that

this receiverrequiresknowledge of the loop SNR p, the

signalpower P, and the noisevariance an2. The accuracy

of thisknowledge, which must be obtained by measure-

ment, willhave an impact on the ultimate performance

of thisreceiver.Later, in Subsection E, the authors in-

vestigatethe sensitivityofthe receiverto a mismatch be-

tween the true loop SNR and the value supplied to the

receiverimplementation in Fig. I. In the next section,

except in Section III.E,itis assumed that the receiver

has perfectknowledge ofp, and thus should outperform a

conventionalbit-by-bitcorrelationreceiverwhich does not

make use of thisknowledge. The followingsectionsdeter-

nzinehow much the optimum partiallycoherent sequence

receiveroutperforms the conventionalbit-by-bitcorrela-

tionreceiver.

II!, Bit Error Probability Performance

To obtaina simpleupper bound on the averagebiterror

probability,Pb, of the proposed N-bit detectionscheme,

use a union bound analogous to thatused forupper bound-

ing the performance of error correctioncoded systems.

In particular,the upper bound on Pb isthe sum of the

pairwiseerrorprobabilitiesassociatedwith each N-bit er-

ror sequence. Each pairwiseerror probabilityisthen ei-

ther evaluated directlyor itselfupper bounded. Math-

ematicallyspeaking, let _b= (_t,@k-1,...,_k-lv+1) de-

note the sequence of N transmitted information phases

and 3= (_k,¢_-x,...,_k-/v+1) be the corresponding se-

quence of detected phases. Let u be the sequence of

b = N logs M information bits that produces #bat the

transmitterand letflbe the sequence ofb bitsthat results

from the detectionof_ Then, sinceMPSK isa symmetric

signallingset,i.e.,itsatisfiesa uniform errorprobability

(UEP) criterion,one getsan upper bound on the biterror

probability,

I _w(u,_i) Pr {r}>r/l_b,_= } (13)Pb(_e) < N log s ._[

where the decisionstatisticr}isdefined from Eqs. (I0)and

(11)by2

r7 = Rk_ie'_ ¢_h-, +

i=0

(14)

2 Note that when compared with Eq. (II),rjof Eq. (14) includes the

additional comtant (po2n/xt_ff)_ . This, however, hal no effect On

the declsion-maklng process and thus one can use the convenient

form of Eq. (14) with no lols in generality.

ii'--
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and the corresponding error statistic y) is identical to
Eq. (14) with each ¢2 replaced by Ck. Ill Eq. (13), w(u,fi)

denotes the Hamming distance between u and fi, ¢ is

any input sequence (e.g., the null sequence (0,0,...,0) =

0), and Pr {_) > ,7 I ¢, ¢c} denotes the pairwise probabil-

ity that _ is incorrectly chosen when indeed ¢b was
sent. Note that the bound in Eq. (13) is computed for

a fixed carrier phase error, $¢, which accounts for the

notational dependence of Pr {_ > ,1 I ¢,$c} and thus

Pb(¢c) on ¢c.

A. Evaluation of the Pairwise Error Probability

To compute Pr {_ > t/I _b, ¢c}, the approach taken in [2] is used for evaluating the performance of multiple symbol

differentially coherent detection of MPSK. In particular, letting ,7 = ]zll 2 and 7) = Iz212 [see Eq. (14) and the statement

below it for the definitions of zl and z2], then [3]

1[ ] (15)

- Where Q(x, y) is the Marcum Q function [4] and

(b}a = _-zi ( $1 -{- $2 - 2 [_l_ cOs (_1 - 02"{" v)_1--[_l 2
(16)

where the q- sign and - sign correspond to b and a, respectively, and

P e-iCe
SI = P N + 2E+-_o = P N_ q" E+ToN C°s¢c +

P----e-J_° = P 1 12+ E,/---'-_o$2 -- P 6 + 2E,/No

P 2

I --2 No
Nz = _lzl --2TI = N_.

1 6

= y-_+(z, -_)(z2 -'_)* = -_; _, = arg_ = arg_

01 =arg_=arg Ne j#°+2E p ; 02=arg_=arg 6ei#°+2E,/'--'-'_o

and

N-1

/f = E e/(¢k-'-_'-')0 (18)
i---O

which is a normalized time cross correlation between s and h. Also, E,/No a_ PT/No denotes the symbol energy-to-noise

spectral density ratio and is related to the bit energy-to-noise spectral density ratio Ea/No by E,/No = (Eb/No)log 2 M.

Substituting Eq. (17) into Eq. (16) results, after considerable simplification, in
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(19)

Now some special cases of practical interest are considered.

B. Case 1: Binary PSK With Two-Symbol Observation and Detection (M= 2, N= 2) ' ....................

In this case, E,/No = Eb/No. There are M 2 - 1 = 3 possible error sequences each of length 2. The pertinent results
related to the evaluation of Eqs. (18) and (19) are

0 _" 0

_- 0 0
_F 71" _2

For the first two error sequences, Eq. (19) evaluates to

b=_ 4+2 eos¢,+_

(20)

For the third error sequence, both a and b approach infinity (the ratio a/b, however, approaches unity) as _ approaches

-2. Thus, one must evaluate the pairwise error probability Eq. (15) separately for this case. It is straightforward to
show that

L.oo 5 erfe _-
a/b.-.* l

(21)

Furthermore, in the general case where _ --* -N, Eq. (21) evaluates to

6_% y(., b) = 5 errc cos¢o (22)

which for N = 2 and M = 2 becomes

6--_ _ erfc cos¢, (23)
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Finally, noting that the Hamming distance w(u,fi) is equal to 1 for the first two error sequences and is equal to 2 for

the third sequence, substituting Eqs. (23) and (15) combined with Eqs. (19) and (20) into the expression for bit error

probability in Eq. (13) gives

(24)

Finally, the upper bound on average bit error probability Pb is obtained by averaging the upper bound in Eq. (24) over

the pdf in Eq. (4). Figures 2 and 3 are plots of this upper bound on average probability versus Eb/No in decibels for
values of p = 7 dB and 10 dB, respectively. For the purpose of comparison, the exact results (i.e., not an upper bound)

for the conventional ideal coherent metric operating in a noisy carrier synchronization environment are

l, o. o
Pb = _erfc _V No /

(25)

where p(¢c) is given by Eq. (4). Even with only one additional observation symbol interval, considerable savings in
Eb/No can be achieved at a fixed error probability, particularly in the region of the knee of the curve where the system

begins approaching its irreducible error probability 3 asymptote (error floor).

C. Case 2: Binary PSK with N-Symbol Observation and Detection (M = 2, N arbitrary)

For N arbitrary, b takes on values -(N - 20;i = 0, 1, 2, ..., N - 1. The number of error sequences corresponding

each of these values of 6 is binomially distributed, i.e., there are (_) sequenc.es that yield a value 6 - -(N - 2/).to

the Hamming weight associated with each of the (g) sequences that yield a value _ = -(N- 2/)isFurthermore,

w(u,fi) = N - /. Finally then, using the above in Eqs. (19) and (22) and substituting the results in Eq. (13), the

conditional bit error probability is upper bounded by

Pb(q_) __ "_ N 2 erfc cos¢¢ +_1 (N-i)f(ai,b,)
i.=1

= _ erfc ¢¢ + i /(a/,b,) (26)

where

al =2_0 N+ _ cos¢c+_ _ 4- 2v_N-i)+ _ cos_bc (27)

s It is well kl_own [1] that conventional PSK systems exhibit an irreducible error probability (i.e., a finite error probability in the limit

as Eb/No approaches infinity) when a noisy carrier synchroni_tion reference v#ith fixed potuer is used as a demodulation signal. This is

observed by examining a curve of Pb versus Eb/No with loop SNR, p, held fixed. The value of this irreducible error probability il given

by [1] Pblirr ffi f:/2 p(¢c)d_bc. Note that in practice, as the observation length increases, one should decrease the loop bandwidth of the

phase-locked loop (PLL), which results in an increase in the loop SNR, Also, as the bit $NR increases, the loop SNR (for fixed modulation

index) increases and thus the error floor decreases.
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The upper bound on unconditional average bit error probability is now obtained by averaging Eq. (26) over the pdf in

Eq. (4). The numerical results are illustrated in Figs. 2 and 3 for values of N = 4, 6, and 8. As N gets large, the curves

appear to approach an asymptote. This asymptotic behavior is analytically evaluated as follows:

For large N, the first term in Eq. (26) when integrated over the pdf in Eq. (4) approaches the irreducible error

probabi]ity P, I,rr -- f:']2 p(¢c)d¢¢. Also, the dominant term in the summation term of Eq. (26) corresponds to / -- N- 1,

i.e., 6 = N -2. Thus, for large N, the second term of Eq. (26) approaches f(aN-l,bN-1) where

bN-1 } Eb

Since from Eq. (28), _ >:> _ - a_-_-l, then using the asymptotic form of Eq. (15) for a and b large (see

Appendix A of [5]), namely,

f(a, b) _ -_ erfc (29)

The value f(aN-l, bN-l) is obtained as

f(aN-l,bN-1) _-- _ erfc (30)

independent of ¢c. Finally then, for large N, the asymptotic behavior of the average bit error probability is approximately

upper bounded by

1Pb _ _ erfc + 2 p(¢c)d_b¢ (31)
/_

namely, the 8urn of the bit error probability for ideal coherent detection and the error floor, Equation (31) is in very close

agreement with the curves for N = 8 in Figs. 2 and 3,

D. Case 3: Quaternary PSK With Two-Symbol Observation and Detection (M = 4, N = 2)

In th_ case, E,/No = 2E_/No. There are now s total of M 2 - 1 = 15 possible error sequences each of length 2. Of

these, only eight produce distinct combinations of 16[ and v, These are tabulated below:

Error

sequence

1,2,3,4 I -, O, 3r/2, ./2 O, -, r/2, 3./2 0 0

5,6 2 O, .12 ./2, 0 V_ z,/4
7,8 3 0, 3,/2 3r/2, 0 Vt2 -r/4

9,1o 4 ./2,.. ,r,./2 v_ 3./4
11,12 5 ,,3,/2 3,/2,, x/2 -3,/4

13 6 ,/2 r/2 2 ,/2

14 7 3_r/2 3,/2 2 -,/2
15 8 lr Ir 2 x
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The corresponding valuesof a and b foreach ofthe firstfivecaseswhich correspond to [6[# 2 are given asfollows:

) ([ ,a 2 No

a -_0 2+ P

= Eb p

cos ¢c + _ _ ± 2+ 2EV/No cos,o

112E_/N012]+[x/2+ 1 12ESgol(cos ¢c+sin_c)]}co_¢o+_

•co_¢o+_

31 ' I_1 [ 1 I P l(3c°s¢c+sin_c)]}co__o+_ _ 4- _+-_ 2E_#o

co_¢°+3 (32)

For cases6 and 7,the followingisanalogous to Eq. (22);

lim .:(a,b)-" 1 { _'cos

which for N = 2 and M = 4 becomes

+ sm _b,)) (33)

6--,±i2 _ erfc (cosCe 4-sm ¢c) (34)

Finally, for case 8, Eq. (22) is used to obtain

lira f(a, b) = erfc cos¢c (35)

Evaluating the Hamming distances for the 15 error sequences and substituting the above results into the expression for

the bit error probability bound in Eq. (13) gives

<1Pb(¢o)_ 4 (6/(_, b_)+ 2/(a2, b_)+ 2f (._, b3)+ 4Y(_., b.) + 41(_5,bs)}

+ 1 2Eb + sin
_{erfc(_0b(cos¢c ¢¢))+ erfc(_0b(cos¢,--sin$,))+ erfc(_0bcos,c)) (36)
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Figures 4 and 5 are comparable to Figs. 2 and 3 for the M = 4 (QPSK) case. The analytical exact result corresponding

to the ideal coherent metric operating in a noisy carrier synchronization environment is now [1]

Pb = • _ erfc (cos Ce + sin ¢¢) p(¢e)d¢_ + ,__ erfc _,V _00 _ ¢c - sin ¢c) p(¢c)d¢_ (37)

Analysis and plots for larger values of N are not included here, but they would show further improvement as was true

for the binary case.

E. Performance Sensitivity to Mismatch

In Loop SNR

Here the authors investigatethe sensitivityof the aver-

age biterror probability(in terms of itsupper bound) of

the MLSE receiverto a mismatch between the true loop

SNR, p, and the estimate of it,_, supplied to the imple-

mentation of Fig. i. in particular,the authors evaluate,

forthe specialcasesofSectionsIII.Band III.C,the upper
bound

j_
P_ P_. (¢_;_)p(¢o)d¢° (3S)

where P_,, (¢_;#) is given by the upper bound in Eq. (24)

or Eq. (26) with p replaced by ,fi -- p[1 -b (/_- p)/p] A_

p(1-be) and P(¢c) is as given by Eq. (4). Figures 6 and
7 are illustrations of Eq. (38) for M = 2,p -- 10 dB, and

N - 2 and 8, respectively, with fractional mismatch e as
a parameter. One observes that even with mismatches as

much as 50 percent (e = 4-0.5), there is negligible effect

on the error probability performance. Thus, the authors

conclude that the MLSE receiver is quite insensitive to
mismatch ill the loop SNR.

IV. Conclusions

By making use of the known (or estimated) value of

loop SNR in the decision metric, it is possible to im-

prove the error probability performance of a partially co-

herent MPSK system relative to that corresponding to
the commonly used ideal coherent decision rule. Using

a maximum-likelihood approach, an optimum decision
metric was derived and shown to take the form of a

weighted sum of the ideal coherent decision metric (i.e.,

correlation) and the noncoherent decision metric previ-
ously shown to be optimum for differential detection of

MPSK. The performance of a receiver based on this op-

timum decision rule improves with the increasing length

of the observation interval (data symbol sequence length).
Furthermore, the performance is quite insensitive to mis-

match between the estimate of loop SNR (e.g., obtained

from measurement) fed to the decision metric relative and
its true value.
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